
VMAgent
Release 0.0.1

Jarvis

Apr 19, 2022

INSTALLATION

1 Installation 3

2 Scenarios 5

3 Dataset 9

4 GYM 15

5 Framework 17

6 DQN 19

7 A2C 21

8 PPO 23

9 SAC 25

10 Visualization Usage 27

11 Data Formats 29

12 schedgym 31

13 vmagent 33

Python Module Index 35

Index 37

i

ii

VMAgent, Release 0.0.1

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. It
is developed by the Multi-Agent Artificial Intelligence Lab (MAIL) in East China Normal University and Algorithm
Innovation Lab in Huawei Cloud. VMAgent is constructed based on one month real VM scheduling dataset called
Huawei-East-1 from HUAWEI Cloud and it contains multiple practicle VM scheduling scenarios (such as Fading,
Rcovering, etc). These scenarios also correspond to the challanges in the RL. Exploiting the design of RL methods in
these secenarios help both the RL and VM scheduling communities.

Key Components of VMAgent:

• SchedGym (Simulator): it provides many practical scenarios and flexible configurations to define custom sce-
narios.

• SchedAgent (Algorithms): it provides many popular RL methods as the baselines.

• SchedVis (Visulization): it provides the visualization of schedlueing dynamics on many metrics.

INSTALLATION 1

https://github.com/mail-ecnu/VMAgent
https://github.com/mail-ecnu/VMAgent/blob/master/vmagent/data/Huawei-East-1.csv

VMAgent, Release 0.0.1

2 INSTALLATION

CHAPTER

ONE

INSTALLATION

1.1 Install from Source

First clone our git repo:

git clone https://github.com/mail-ecnu/VMAgent.git
cd VMAgent

Then create the virtual environment to satisfy dependency with conda:

conda env create -f conda_env.yml
conda activate VMAgent-dev

Finally Install our simulator:

python3 setup.py develop

3

VMAgent, Release 0.0.1

4 Chapter 1. Installation

CHAPTER

TWO

SCENARIOS

Our VMAgent provides multiple virtual machine scheduling scenarios in the practical cloud computing. These sce-
narios differ from each other on the cluster’s feature and the request’s feature. Moreover, these different scenarios
also pose different perspective difficluties on the reinforcement learning methods. We summarize the cluster features,
request features and their corresponding difficuluties on RL below.

2.1 Scheduling

The virtual machine scheduling problem can be divided into three main components: Request Sequence, Cluster and
Scheduler.

Breifly speaking, a number of users request virtual machine resources and proposes requests sequentially. Each time
the scheduler observes a request, it will check the cluster and find a server in the cluster to handle the request. The
server then allocate corresponding resources for the request. When there are no server in the cluster can handle the
request, the scheduler will be terminated. The scheduler is designed to avoid termination.

5

VMAgent, Release 0.0.1

2.2 Cluster

For a cluster, it includes N servers. The server often has its attribute (c, m, numas) where the numas is the number of
numa it has and the c and m are the number of the cpu and memory each numa has. In our VMAgent, the c=40, m=90
and the numas=2. For a RL scheduler, if the N increases, then the state and action dimension exponentially increase.

A cluster also featured by whether it can expand the servers. In practical scenarios, the cloud service provider needs
to ensure the cluster never terminated because of the short of server resources. Thus they often buy a bunch of servers
when the availiable resources in the cluster are lower than the threshold. With more servers added, the RL scheduler
will face a different problem and this makes it a life-long learning challanges.

2.3 Request

For the request, it contains (rc, rm) where the rc and rm are the number of cpu and memory it needs. The requests can
be divided into two categories: creation request and deletion request. For the creation request, the cluster need to assign
corresponding resources to it. For the deletion request, the clueter need to find where the resources that the request
occupied and remove it. In dedicated cloud, users often buy the servers for a long time and the deletion requests are
few. While for public cloud, the deletion requests happen more frequently. This brings a high non-stationary challange
for the RL scheduler.

2.4 Clustomize Your Scenario

Our VMAgent provides flexible configurations to customized your own scenarios. In the vmagent/config/envs, we
provide several examples. Take the expand.yml as an example:

N: 20
cpu: 40
mem: 90
allow_release: True
double_thr: 10

6 Chapter 2. Scenarios

VMAgent, Release 0.0.1

It has a cluster with 20 servers and each server has 2 numas. Each numa hash 40 cores cpu and 90 GB memory. It
handles the deletion (allow_release) requests. For a request that requires more than 10 cores cpu, it will be distributed
on a server’s two numas. Users are allowed to change the configuration to their own scenarios.

2.4. Clustomize Your Scenario 7

VMAgent, Release 0.0.1

8 Chapter 2. Scenarios

CHAPTER

THREE

DATASET

VMAgent is constructed based on one month real VM scheduling dataset called Huawei-East-1 from HUAWEI Cloud.
The Huawei-East-1 is placed in our repository.

3.1 Data Format

The data format is concluded below

Field Type Description
vmid int The virtual machine ID
cpu int Number of CPU cores
memory int Number of Memory GBs
time int Relative time in seconds
type int 0 denotes creation while 1 denotes deleteion

3.2 Statistical Analysis

The statsical information of the dataset is listed below.

Number of VM
types

Number of creation re-
quests

Number of deletion re-
quests

Time dura-
tion

Server loca-
tion

15 125430 116313 30 Days East China

To gain better understanding of the cpu and memory distribution, we plot the histograms of the cpu and memory.

More than 2/3 requests only consumes 1U and less than 2G. We also plot the statiscs of the (cpu, mem) request:

The 1U1G,1U2G, 2U4G and 4U8G constitues the main body of the requests.

We also visualize the dynamic of virtual machine during the month:

Although there exists deletion request, the number of alive virtual machines increses from 0 to more than 8000. It
should be noted that, even in the one month, the VM’s dynamic is highly related to the time. Increase, Flux,
Increase, Flux happens through the one month.

We also visualize the allocated cpu and memory dynamic above. They can be helpful in constructing domain knowl-
edge.

9

https://vmagent.readthedocs.io/en/latest/simulator/dataset.html
https://www.huaweicloud.com
https://github.com/mail-ecnu/VMAgent/blob/master/vmagent/data/Huawei-East-1.csv

VMAgent, Release 0.0.1

10 Chapter 3. Dataset

VMAgent, Release 0.0.1

3.3 Naive Baselines performance

Another way to describe the dataset is measuring performance of naive baselines in the dataset. We adopt First-Fit and
Best-Fit as the naive baselines and conduct experiments on different settings.

We conduct fading and recovering experiments with 5, 20, 50 servers and each server has 40 cpu and 90 memeory.

3.3. Naive Baselines performance 11

VMAgent, Release 0.0.1

12 Chapter 3. Dataset

VMAgent, Release 0.0.1

3.3. Naive Baselines performance 13

VMAgent, Release 0.0.1

Scenario Number of
servers

Method Number of Alloca-
tions

Terminated CPU
Rate

Terminated MEM
Rate

Fading 5 BestFit 211.7± 30 91.6%± 9.4% 83.6%± 9.2%
First-
Fit

224.5± 28 98.3%± 1.9% 90.0%± 1.9%

20 BestFit 735.1± 83 63.5%± 29.2% 35.7%± 21.9%

First-
Fit

888.0± 65 91.6%± 8.5% 64.7± 5.6%

50 BestFit 1674.5± 28 91.6%± 1.1% 84.3± 1.0%

First-
Fit

2298.3± 19 95.5%± 0.7% 91.5%± 0.5%

Recover-
ing

5 BestFit 221.1± 29 96.3%± 5.6% 88.1%± 5.7%

First-
Fit

222.7± 27 97.2%± 3.4% 89.0%± 3.4%

20 BestFit 850.0± 13 99.1%± 0 95.8%± 0

First-
Fit

926.1± 10 98.7%± 0.5% 96.5%± 0.3%

50 BestFit 1829.6± 37 92.8%± 1.4% 88.8%± 0.2%

First-
Fit

2301.7± 19 95.0%± 0.5% 91.1%± 0.4%

14 Chapter 3. Dataset

CHAPTER

FOUR

GYM

Here we define the state, action, reward function and transition function in the VM scheduling.

4.1 State

SchedAgent make scheduling based on the cluster status and the current request information. For a cluster has N
servers and each server has two numas. Each numa has two type of resources: cpu and memory. The cluster status is
represented as a vector with Nx2x2 shape. For the request, each request contains information about cpu and memory,
which makes us represent it with a vector with shape 2. Thus the whole state represented as [cluster, request] which
has (Nx2x2+2) shape.

4.2 Action

In our VM scheduling, the scheduler is to select which server to handle the current request. Thus the action space of
the scheduler is N. It should be noted that, if the selected server is unable to handle the request, it will be treated as
invalid one. Due to the double numa architecture, for the small requet (requested cpu is smaller than a threshold) it
needs to be allocated on a specific numa of a server. This makes the action space to N. For simplicity, our SchedGym
makes the action space 2N and the large request is handled by action%2.

4.3 Reward

In our VMScheduling, the scheduler is to avoid termination. We denote a scheduler perform better than others if it can
handle more request with the same number of resources. Thus one of the simplest way is designing reward as ‘+1’ after
the scheduler handle a request.

The ‘+1’ reward makes a difficulty on understand the impact of large request. Thus we propose another reward
request['cpu]. The scheduler gain more reward if it handle a larger request.

15

VMAgent, Release 0.0.1

4.4 Transition Function

When a server handle a creation request (𝑐0,𝑚0), it will allocate (𝑐0,𝑚0) resource for the request. Specif-
ically, if the server is [[𝑐1,𝑚1], [𝑐2,𝑚2]] and (𝑐0,𝑚0) is a large creation request. The server will be
[[𝑐1−𝑐0

2 , 𝑚1−𝑚0

2], [𝑐2−𝑐0
2 , 𝑚2−𝑚0

2]]. If (𝑐0,𝑚0) is a small request and server’s first numa is to handle it, then the server
will be [[𝑐1 − 𝑐0,𝑚1 −𝑚0], [𝑐2,𝑚2]]. For the deletion request, the minus above will turn to add.

4.5 Interaction Example

import numpy as np
from schedgym.sched_env import SchedEnv

DATA_PATH = 'vmagent/data/Huawei-East-1.csv'
env = SchedEnv(5, 40, 90, DATA_PATH, render_path='../test.p',

allow_release=False, double_thr=32)
MAX_STEP = 1e4
env.reset(np.random.randint(0, MAX_STEP))
done = env.termination()
while not done:

feat = env.get_attr('req')
obs = env.get_attr('obs')
sample by first fit
avail = env.get_attr('avail')
action = np.random.choice(np.where(avail == 1)[0])
action, next_obs, reward, done = env.step(action)

16 Chapter 4. GYM

CHAPTER

FIVE

FRAMEWORK

Our VMAgent’s framework is mainly based on the pymarl. It consists controller, learner, components, modules
and utils.

5.1 Controller

The controller plays the role on output actions for sampling.

5.2 Learner

The learner plays is to update the agent’s policy

5.3 Components

It provides key components for learning and sampling. It includes the implementations of replay memory and action
selector (i.e., epsilon-greedy action selection).

5.4 Modules

It provides different networks of the agent, including critic network, policy network etc.

5.5 Utils

It provides several utils for reinforcement learning.

17

https://github.com/oxwhirl/pymarl

VMAgent, Release 0.0.1

18 Chapter 5. Framework

CHAPTER

SIX

DQN

DQN1 is a popular off-ploicy reinforcement learning algorithm. In our VMAgent, we implement the DQN with Double
Q2 and Dueling Q3. The DQN agent out Q values for each server (NUMA) and we take epsilon-greedy to select action
based on the Q values.

6.1 Example

Train DQN in fading environment with 5 servers, and parameters gamma=0.99 learning_rate=0.003:

python vmagent/train.py --env fading --alg dqn --N 5 --gamma 0.99 --lr 0.003

1 Mnih, Volodymyr, et al. “Human-level control through deep reinforcement learning.” nature 518.7540 (2015): 529-533.
2 Van Hasselt, Hado, Arthur Guez, and David Silver. “Deep reinforcement learning with double q-learning.” Proceedings of the AAAI conference

on artificial intelligence. Vol. 30. No. 1. 2016.
3 Sewak, Mohit. “Deep q network (dqn), double dqn, and dueling dqn.” Deep Reinforcement Learning. Springer, Singapore, 2019. 95-108.

19

VMAgent, Release 0.0.1

20 Chapter 6. DQN

CHAPTER

SEVEN

A2C

A2C1 is a popular Actor-Critic reinforcement learning algorithm which uses the advantage function instead of the
original return in the critical network. In our VMAgent, we implement the A2C with advantage function. The criitic
out the q value for each server (NUMA) and the actor out probility of actions.

7.1 Example

Train A2C in fading environment with 5 servers, and parameters gamma=0.99 learning_rate=0.003:

python vmagent/train.py --env fading --alg a2c --N 5 --gamma 0.99 --lr 0.003

1 Schulman J, Moritz P, Levine S, et al. High-dimensional continuous control using generalized advantage estimation[J]. arXiv preprint
arXiv:1506.02438, 2015.

21

VMAgent, Release 0.0.1

22 Chapter 7. A2C

CHAPTER

EIGHT

PPO

PPO1 is a popular Actor-Critic reinforcement learning algorithm which forces the updata of the policy not to be large.
In our VMAgent, we implement the PPO2. The criitic out the q value for each server (NUMA) and the actor out
probility of actions.

8.1 Example

Train PPO in fading environment with 5 servers, and parameters gamma=0.99 learning_rate=0.003:

python vmagent/train.py --env fading --alg ppo --N 5 --gamma 0.99 --lr 0.003

1 Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv:1707.06347, 2017.

23

VMAgent, Release 0.0.1

24 Chapter 8. PPO

CHAPTER

NINE

SAC

SAC1 is a popular Actor-Critic reinforcement learning algorithm whith maximum entropy RL. In our VMAgent, we
implement the SAC with automatic entropy adjustment. The criitic out the q value for each server (NUMA) and the
actor out probility of actions.

9.1 Example

Train SAC in fading environment with 5 servers, and parameters gamma=0.99 learning_rate=0.003:

python vmagent/train.py --env fading --alg sac --N 5 --gamma 0.99 --lr 0.003

1 Haarnoja T, Zhou A, Abbeel P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic ac-
tor[C]//International conference on machine learning. PMLR, 2018: 1861-1870.

25

VMAgent, Release 0.0.1

26 Chapter 9. SAC

CHAPTER

TEN

VISUALIZATION USAGE

10.1 Install requirements

pip install -r requirements.txt

10.2 Start server

You can either run a development server or deploy it to a production environment.

10.2.1 Run a development server

python run.py

10.2.2 Deploy to production via gunicorn

Install gunicorn, and run the following command.

gunicorn dashboard.wsgi

10.3 Upload your data

After starting the service, visit and upload the data (pickle file) you want to visualize through the web page.

For the format of the file, please refer to the data format.

27

./format.md

VMAgent, Release 0.0.1

28 Chapter 10. Visualization Usage

CHAPTER

ELEVEN

DATA FORMATS

11.1 Supported Data Formats

We support data files in two formats: Data or Raw Data in a single pickle file.

11.2 Objects

The structure and necessary fileds of each object are described below.

11.2.1 Data

Field Type Description
name string Scheduling algorithm name
data List[Frame] (a.k.a Raw Data)

11.2.2 Raw Data

[
Frame1,
Frame2,
Frame3,
...

]

11.2.3 Frame

Field Type Description
server List[Server]The status of each server at the current time.
request Request The info of the request at the current time.
action int The resource id to which the current request is assigned, which is calculated by server

id * 2 + numa id.

29

VMAgent, Release 0.0.1

11.2.4 Server

[
[CPU1, MEM1], # CPU and MEM usage of NUMA1
[CPU2, MEM2] # CPU and MEM usage of NUMA2

]

11.2.5 Request

Field Type Description
cpu int Required CPU
mem int Required memory
type int 0 for allocation and 1 for release
is_double bool or int Whether the request is a double-numa request or not

30 Chapter 11. Data Formats

CHAPTER

TWELVE

SCHEDGYM

12.1 schedgym package

12.1.1 Submodules

12.1.2 schedgym.mySubproc_vec_env module

12.1.3 schedgym.sched_env module

12.1.4 Module contents

31

VMAgent, Release 0.0.1

32 Chapter 12. schedgym

33

VMAgent, Release 0.0.1

CHAPTER

THIRTEEN

VMAGENT

13.1 components package

13.1.1 Submodules

13.1.2 components.action_selectors module

13.1.3 components.replay_memory module

13.1.4 Module contents

13.2 controllers package

13.2.1 Submodules

13.2.2 controllers.basic_controller module

13.2.3 controllers.ppo_controller module

13.2.4 controllers.sac_controller module

13.2.5 Module contents

13.3 learners package

13.3.1 Submodules

13.3.2 learners.a2c_learner module

13.3.3 learners.ppo_learner module

13.3.4 learners.q_learner module

13.3.5 learners.sac_learner module

13.3.6 Module contents

13.4 utils package

13.4.1 Submodules

13.4.2 utils.rl_utils module

13.4.3 Module contents

34 Chapter 13. vmagent

PYTHON MODULE INDEX

s
schedgym, 31

u
utils, 34

35

VMAgent, Release 0.0.1

36 Python Module Index

INDEX

M
module

schedgym, 31
utils, 34

S
schedgym

module, 31

U
utils
module, 34

37

	Installation
	Install from Source

	Scenarios
	Scheduling
	Cluster
	Request
	Clustomize Your Scenario

	Dataset
	Data Format
	Statistical Analysis
	Naive Baselines performance

	GYM
	State
	Action
	Reward
	Transition Function
	Interaction Example

	Framework
	Controller
	Learner
	Components
	Modules
	Utils

	DQN
	Example

	A2C
	Example

	PPO
	Example

	SAC
	Example

	Visualization Usage
	Install requirements
	Start server
	Run a development server
	Deploy to production via gunicorn

	Upload your data

	Data Formats
	Supported Data Formats
	Objects
	Data
	Raw Data
	Frame
	Server
	Request

	schedgym
	schedgym package
	Submodules
	schedgym.mySubproc_vec_env module
	schedgym.sched_env module
	Module contents

	vmagent
	components package
	Submodules
	components.action_selectors module
	components.replay_memory module
	Module contents

	controllers package
	Submodules
	controllers.basic_controller module
	controllers.ppo_controller module
	controllers.sac_controller module
	Module contents

	learners package
	Submodules
	learners.a2c_learner module
	learners.ppo_learner module
	learners.q_learner module
	learners.sac_learner module
	Module contents

	utils package
	Submodules
	utils.rl_utils module
	Module contents

	Python Module Index
	Index

